Home    |    Instructor-led Training    |    Online Training     
         
 
Courses
ADA
Adobe
Agile
AJAX
Android
Apache
AutoCAD
Big Data
BlockChain
Business Analysis
Business Intelligence
Business Objects
Business Skills
C/C++/Go programming
Cisco
Citrix
Cloud Computing
COBOL
Cognos
ColdFusion
COM/COM+
CompTIA
CORBA
CRM
Crystal Reports
Data Science
Datawarehousing
DB2
Desktop Application Software
DevOps
DNS
Embedded Systems
Google Web Toolkit (GWT)
IPhone
ITIL
Java
JBoss
LDAP
Leadership Development
Lotus
Machine learning/AI
Macintosh
Mainframe programming
Mobile
MultiMedia and design
.NET
NetApp
Networking
New Manager Development
Object oriented analysis and design
OpenVMS
Oracle
Oracle VM
Perl
PHP
PostgreSQL
PowerBuilder
Professional Soft Skills Workshops
Project Management
Python
Rational
Ruby
Sales Performance
SAP
SAS
Security
SharePoint
SOA
Software quality and tools
SQL Server
Sybase
Symantec
Telecommunications
Teradata
Tivoli
Tomcat
Unix/Linux/Solaris/AIX/
HP-UX
Unisys Mainframe
Visual Basic
Visual Foxpro
VMware
Web Development
WebLogic
WebSphere
Websphere MQ (MQSeries)
Windows programming
XML
XML Web Services
Other
Introduction to Machine Learning
Machine learning/AI Overview

This training course is for people that would like to apply basic Machine Learning techniques inpractical applications.

Machine learning/AI Target Audience:

Data scientists and statisticians that have some familiarity with machine learning and know how toprogram R. The emphasis of this course is on the practical aspects of data/model preparation,execution, post hoc analysis and visualization. The purpose is to give a practical introduction tomachine learning to participants interested in applying the methods at workSector specific examples are used to make the training relevant to the audience.

Machine learning/AI Course duration

2 Days

Machine learning/AI Course outline
  • Naive Bayes
  • Multinomial models
  • Bayesian categorical data analysis
  • Discriminant analysis
  • Linear regression
  • Logistic regression
  • GLM
  • EM Algorithm
  • Mixed Models
  • Additive Models
  • Classification
  • KNN
  • Ridge regression
  • Clustering



Please contact your training representative for more details on having this course delivered onsite or online

Training Outlines - the one stop shopping center for IT training.
© Training Outlines All rights reserved